Calculate by hand the deformation of joint 2 of the following simple beam using the Virtual Work Method.

Hint for solution
According to the method; the integral should be considered separately for the bars between 1-2 and 2-3 nodes.
Detailed solution
E= Modulus of elasticity A= Cross-sectional area I= Cross-section moment of inertia
M= Moment due to external loading M'= Moment due to unit loading Δ= Deformation
Step 1 Finding Moment function by Unit Loading



Q: unit load D1 , D3 : Support responses M'(2): 2 DN moment value L: Element length
M'1-2 (x): 1-2 Moment function M2-3 (x): 2- 3 Moment function ΣM1,dn: Total moment relative to 1 DN.
ΣD: Total balance
Moment Function 1-2 :
Moment Function 2-3 :
Step 2: Finding the Moment Function Based on the Given Load



q: Distributed load D1 , D3 : Support responses M(2): 2 DN moment value L: Element length
M(x): Moment function ΣM1,dn : Total moment with respect to 1 DN.
ΣD: Total balance
Moment Function :
Step 3: Multiplying the M and M' Moment Functions in the Previous Steps and Getting the Integral
Integral for 1-2 Bar
Integral for 2-3 Bar
' aria-hidden='true'%3e %3cg transform='translate(167%2c0)'%3e %3cg transform='translate(-11%2c0)'%3e %3cg transform='translate(0%2c-65)'%3e %3cuse xlink:href='%23E1-MJMATHI-45' x='0' y='0'%3e%3c/use%3e %3cuse xlink:href='%23E1-MJMATHI-49' x='764' y='0'%3e%3c/use%3e %3cuse xlink:href='%23E1-MJMAIN-3D' x='1546' y='0'%3e%3c/use%3e %3cg transform='translate(2603%2c0)'%3e %3cuse xlink:href='%23E1-MJMAIN-36'%3e%3c/use%3e %3cuse xlink:href='%23E1-MJMAIN-32' x='500' y='0'%3e%3c/use%3e %3cuse xlink:href='%23E1-MJMAIN-32' x='1001' y='0'%3e%3c/use%3e %3cuse xlink:href='%23E1-MJMAIN-30' x='1501' y='0'%3e%3c/use%3e %3cuse xlink:href='%23E1-MJMAIN-38' x='2002' y='0'%3e%3c/use%3e %3cuse xlink:href='%23E1-MJMAIN-30' x='2502' y='0'%3e%3c/use%3e %3c/g%3e %3cuse xlink:href='%23E1-MJMATHI-74' x='5606' y='0'%3e%3c/use%3e %3cuse xlink:href='%23E1-MJMATHI-66' x='5967' y='0'%3e%3c/use%3e %3cuse xlink:href='%23E1-MJMAIN-2E' x='6518' y='0'%3e%3c/use%3e %3cuse xlink:href='%23E1-MJMATHI-63' x='6963' y='0'%3e%3c/use%3e %3cg transform='translate(7396%2c0)'%3e %3cuse xlink:href='%23E1-MJMATHI-6D' x='0' y='0'%3e%3c/use%3e %3cuse transform='scale(0.707)' xlink:href='%23E1-MJMAIN-32' x='1242' y='513'%3e%3c/use%3e %3c/g%3e %3cuse xlink:href='%23E1-MJMAIN-3D' x='9006' y='0'%3e%3c/use%3e %3cg transform='translate(10063%2c0)'%3e %3cuse xlink:href='%23E1-MJMAIN-36'%3e%3c/use%3e %3cuse xlink:href='%23E1-MJMAIN-32' x='500' y='0'%3e%3c/use%3e %3cuse xlink:href='%23E1-MJMAIN-2E' x='1001' y='0'%3e%3c/use%3e %3cuse xlink:href='%23E1-MJMAIN-32' x='1279' y='0'%3e%3c/use%3e %3cuse xlink:href='%23E1-MJMAIN-30' x='1780' y='0'%3e%3c/use%3e %3cuse xlink:href='%23E1-MJMAIN-38' x='2280' y='0'%3e%3c/use%3e %3c/g%3e %3cuse xlink:href='%23E1-MJMATHI-74' x='12844' y='0'%3e%3c/use%3e %3cuse xlink:href='%23E1-MJMATHI-66' x='13205' y='0'%3e%3c/use%3e %3cuse xlink:href='%23E1-MJMAIN-2E' x='13756' y='0'%3e%3c/use%3e %3cg transform='translate(14201%2c0)'%3e %3cuse xlink:href='%23E1-MJMATHI-6D' x='0' y='0'%3e%3c/use%3e %3cuse transform='scale(0.707)' xlink:href='%23E1-MJMAIN-32' x='1242' y='513'%3e%3c/use%3e %3c/g%3e %3c/g%3e %3c/g%3e %3c/g%3e %3c/g%3e %3c/svg%3e)
Deformation of node 2 = 0.107m